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ABSTRACT 

We invest igate  the  m i n i m u m  value of D = D(n) such t h a t  any  n -po in t  

t ree met r ic  space (T, p) can be D-embedded  into a given Banach  space 

(X, [I-N); t h a t  is, there  exists  a m a p p i n g  f : T --~ X wi th  l p ( x , y )  <_ 
Hf(x) - f(Y)[I -< p(x,y) for any  x ,y  G T. Bourga in  showed t h a t  D(n) 
grows to infinity for any  superreflexive X (and th is  character izes  super-  

reflexivity),  and  for X = ~p, 1 < p < oc, he proved a quan t i t a t ive  lower 

b o u n d  of cons t  .(loglogn) min(1/2'l/p). We give another ,  comple te ly  ele- 

m e n t a r y  proof  of  th is  lower bound ,  and  we prove t ha t  it is t ight  (up to the  

value of the  cons tan t ) .  In par t icular ,  we show t h a t  any  n -po in t  tree met -  

ric space  can  be D - e m b e d d e d  into a Eucl idean space,  wi th  no restr ic t ion 

on t h e  d imens ion ,  wi th  D = O ( ~ ) .  

1. I n t r o d u c t i o n  

Let M be a metric space with metric p, let X be a normed space with norm I1.tl, 

and let f :  M --+ X be a mapping.  We say tha t  f is a D - e m b e d d i n g ,  D > 1 a 

real number ,  if we have 

DP(X,y) I l l (x ) -  f(Y)ll < P(x,Y) 

* This paper contains results from my thesis [Mat89] from 1989. Since the subject 
of bi-Lipschitz embeddings is becoming'increasingly popular, in 1997 I finally 
decided to publish this English version. 
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for any two points x, y C M. We say that M D-embeds into X (or that M embeds 

into X with d i s t o r t i o n  at most D) if there exists a D-embedding f :  M --+ X. 

The D-embeddability of finite metric spaces into various normed spaces has 

been studied in a number of papers. This investigation started in the context of 

the local Banach space theory, where the general idea was to obtain some analogs 

for general metric spaces of notions and results dealing with the structure of 

finite-dimensional subspaces of Banach spaces. Early results in this area are due 

to Enflo [Enf69a, Enf69b], and some of the more recent references are Bourgain 

[Bow85, Bow86], Johnson and Lindenstrauss [JL84], Bourgain et al. [BMW86], 

Johnson et al. [JLS87], Arias-de-Reyna and Rodrfguez-Piazza JAR92], and Ma- 

tou~ek [Mat96]. It turns out that D-embeddings can be of considerable interest 

also in theoretical computer science and in some applied areas. They can serve 

as a useful representation of graphs and other metric spaces helping to visualize 

their structure, find clusters, small separators, etc.; see Linial et al. [LLR95]. 

Here we are going to consider the D-embeddahility question for a special class 

of finite metric spaces, namely for the t r e e  m e t r i c  spaces.  A tree metric space 

can be defined as a metric space (T, p) satisfying the fo u r -p o i n t  cond i t ion :  For 

any four points x, y, u, v, we have p(x, y)+p(u, v) ~ max(p(x, u)+p(y, v), p(x, v)+ 
p(y, v)) (see, e.g., [Dre84] for background and equivalent characterizations). A 

finite tree metric space (T, p) can be equivalently characterized as follows: There 

exists a finite (graph-theoretic) tree To with positive real weights on edges such 

that  T is a subset of the vertex set V(To) and the metric p is the metric induced by 

the metric on To given by the edge weights. It is easy to see that we may assume 

IV(To)I < 2tTI, and so if we do not care about exact constants of proportionality, 

we can restrict ourselves to graph-theoretic trees with weighted edges. 

Let Bm denote the c o m p l e t e  b i n a r y  t r e e  o f  he igh t  m. This is a graph 

defined as follows: B0 is a single vertex (the root), and Bm+l arises by taking 

one vertex (the root) and connecting it to the roots of two disjoint copies of 

Bin. We will regard Bm as a finite metric space (defined by the graph-theoretic 

distance on the vertex set, with edges of unit length). 

Let fp denote the space of countable sequences x = (Xl, x2 , . . . )  of real numbers 

with Ill, lip < (:x), where Ilxllp = ( ~ 1  IxilP) lip' and let g~ be the n-dimensional 

subspace spanned by the first n coordinates. Thus, ~ is the usual n-dimensional 

Euclidean space. It is well-known that any finite metric space can be isometrically 

embedded into goo (this is an observation due to Fr@chet), and it is not too 

difficult to show that  any finite tree metric space is isometrically embeddable 

into el. Hence, the ~p spaces of interest to us are those with 1 < p < co. 
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The  embeddab i l i ty  of the  complete  b inary  trees into Banach  spaces has been in- 

vest igated by Bourgain  [Bou86]. He proved tha t  the distort ion of any embedding  
Bm ~ gp is at  least t2p ((log m)  min(~/2, l/v) ) = f~p ((log log n) rain(l/2,1/p) ), where* 

n = 2 m+l - 1 is the number  of vertices of Bin. He also characterized the Banach  

spaces X such tha t  all the  Bm's can be D-embedded  into X for some D --- D ( X )  

independent  of m. These  are exact ly  the spaces tha t  are not s u p e r r e f l e x i v e .  

A superreflexive Banach  space can be defined as one tha t  admi ts  an equivalent 

uniformly convexnorm (a norm [[.[[' is e q u i v a l e n t  to I[.[[ if cl[x[[ ~ Nx[[ ' -~ eHx[[ 

holds for all x and for some constants  0 < c _< C). A Banach  space X with norm 

[[-[I is u n i f o r m l y  c o n v e x  if for any s > 0 there exists f > 0 wi th  the following 

proper ty :  For any two points  x , y  E X with t[xll = tlYtl -- 1 and ttx - Yll ~- s, 

we have I[(x + y)/2[I < 1 - 5. Let fix(G) denote the inf imum of the 5's wi th  

this property .  The  function 5x is called the m o d u l u s  o f  u n i f o r m  c o n v e x i t y  

of the  space X .  For the spaces gp, the modulus  of uniform convexity satisfies 
f~v (S) = ap(smax(2'P)). 

Bourgain ' s  proof  is short  and very elegant. It  is formulated in the language of 

mar t ingales  and uses some results about  mart ingales  in superreflexive spaces. 

Here we give another ,  complete ly  e lementary  and self-contained proof  of his 

results (I found this proof  wi thout  being aware of Bourgain ' s  work, but ,  not  

surprisingly, some of the basic ideas in bo th  proofs are similar). Namely,  we 

prove 

THEOREM 1: Let X be a uniformly convex Banach space whose modulus of  

convexity satisfies f x  (s) >_ cz p for some constants p >_ 2 and c >_ O. Then the 

minimum distortion necessary for embedding Bm into X is at  least  cl (log m)1/p 

for some Cl = cl (c, p) > 0. 

Bourga in  showed tha t  the lower bound  is t ight up to the value of the  constant  

of propor t iona l i ty  for embedding  Bm into a Euclidean space, i.e. for p -- 2. We 

prove tha t  any n-point  tree metr ic  space can be embedded  into ep with dis tor t ion 

at  mos t  O((loglogn)min(1/2,1/P)), where 1 < p < co. In par t icular ,  embedding  

into a Eucl idean space is possible with distort ion O ( ~ ) .  In fact, we 

define a cer ta in  measure  of complexi ty  (dimension) of a tree and we bound  the  

dis tor t ion in t e rms  of this dimension. 

For technical  reasons,  we will work with rooted trees. The  root  can be chosen 

arbi trari ly.  We define the c a t e r p i l l a r  d i m e n s i o n  of a rooted tree T,  denoted  

by ed im(T) ,  as follows: If T consists of a single vertex,  the  root,  then  we put  

* Here the notation f = ~(g) is equivalent to g = O(f) ,  and the subscript in ~"~p(.) 
means that  the constant of proportionality depends on p. 
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cdim(T) -- 0. For a tree T with at least 2 vertices, we define cdim(T) <_ k + 1 

if there exist paths P1, P2, . . . ,  Pr beginning in the root and otherwise pairwise 

disjoint such that  each component Tj of T - E ( P 1 ) -  E(P2) . . . . .  E(Pr) satisfies 

cdim(Tj) < k. Here T - E(P1) - E(P2) . . . . .  E(P~) denotes the tree T with 

the edges of the Pi's removed, and the components Tj are rooted at the single 

vertex lying on some Pi (see also Fig. 1 a few pages later). 

Let us remark that  a similar dimension is used in computer science (for un- 

rooted trees), and that  cdim(T) can be determined in polynomial t ime for a given 

rooted tree T, say by dynamic programming. The name is derived from the case 

of trees of dimension 1, which are caterpillars with legs. A basic example of a 

tree with a large caterpillar dimension is the complete binary tree Bin, for which 

cdim(Bm) = m. We also have the following easy 

LEMMA 2: For any  rooted tree T, cdim(T) < log 2 ]V(T)I holds. 

In Section 3, we prove this lemma and the following result. 

THEOREM 3: For any p E (1, c~) and for any tinite tree metric space T, there 

exists an embedding o f T  into ~ with distortion Op((log cdim(T) )mi"O/2'l/P)). 

Let us remark that  the caterpillar dimension can be defined for infinite tree 

metric spaces as well. The theorem also holds for infinite tree metric spaces with 

a finite caterpillar dimension. 

We will prove the theorem for p > 2. By Dvoretzky's theorem, any infinite- 

dimensional Banach space contains a (1 + ~)-isomorphic copy of ~ for each 

n and each ~ > 0, and consequently there is an embedding with distortion 

O(v/ log cdim(T)) into any infinite-dimensional Banach spa~e. Further, according 

to a theorem of Maurey and Pisier, an infinite-dimensional Banach space whose 

infimum of cotypes is q > 2 contains a (1 + e)-isomorphic copy of ~q (again for all 

n and all e > 0), and so tree metric spaces can be embedded into such Banach 

spaces with distortion O((tog cdim(T)) l/q) (the-notions and results used in this 

paragraph can be found in [MS86], for instance). 

Sometimes it is technically convenient with the following definition of the dis- 

tortion of a mapping. If (X, p) and (Y, a) are metric spaces and f :  X -+ Y 

is an injective mapping, we define the L ipsch i t z  n o r m  of f by IlfIILip = 

s u p { a ( f ( x ) , f ( y ) ) / p ( x , y )  : x , y  e X , x  • y}, and the distortion* of f as IlfllLip" 

IIf -1 ]lL~p. A mapping with distortion 1 thus need not be an isometry but it may 

re-scale all distances in the same ratio. If a mapping with distortion D goes into 

* Also other terminology is used the literature; e.g., a mapping with distortion at 
most D is also called a D-isomorphism, or a D-lipeomorphism, and so on. 
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a no rmed  space, then  it can obviously be re-scaled in such a way tha t  it becomes  

a D-embedd ing  as was defined above. Somet imes  it is s impler  to wr i te  out  the 

definit ion of a mapp ing  with  distort ion D when the scaling factor  is not required 

to be  1. A m a p p i n g  f is called n o n - c o n t r a c t i n g  if tIf-lIILip < 1. 

2. L o w e r  b o u n d  

In this section, we prove Theorem 1. 

Let  Tk,m denote  the c o m p l e t e  k - a r y  t r e e  o f  h e i g h t  m. This  is an obvious 

general izat ion of the complete  b inary  tree; in Tk,m, each non-leaf  ver tex  has k 

successors. The  l eve l  of a ver tex  of Tk,m is its dis tance from the root.  Let  Pn 

denote  the set {0, 1, 2 , . . . ,  n} regarded as a metr ic  subspace of the real numbers  

wi th  the usual metric.  

The  following easy geometr ic  fact will connect  the uniform convexity to em- 

bedding  of trees; the  rest of the proof  is combinatorial .  Let  (X ,p )  be  a met r ic  

space. Define a 6 - f o r k  in  X as a subspace F = {Xo,Xl,X2,X'2} C_ X such tha t  

bo th  {xo, x l ,  x2 } and {xo, x l ,  x~ } are (1 + 6)-isomorphic to the space P2 (with xl  

m a p p e d  to the  middle  point  1). The  points  x2 and x~ are called the t i p s  of F .  

LEMMA 4 (Fork lemma):  Let  X ,  6x,  p be as in Theorem 1, and let F = 

{xo ,x l , x2 , x '2}  be a &fork in X .  Then [lx2 - x~J[ = t[xo - xlJ[ . 0(51/P).  

Proof: We may  assume x0 = 0, Ilxll] = 1. Set 

X 2 - -  X 1 
Z ---- X l  - ~- 

fix2 - x l l l "  

We have [ ] z -  Xl[I = 1, [ ] z -  x21[ <_ 25, and [Izl[ > 2 -  46. Pu t  u -- z -  2Xl. The  

vectors  x -- x l  and y = xl  + u have unit  norm, and for their  midpoin t  

x + y  u z 

2 2 2 

we have 

~ - ~  _ > 1 - 2 5 .  

Hence the uni form convexity condit ion implies [[u[[ = 0(61/v) ,  and so 

I1~= - 2mill ~ IIx~ - ~11 + IIz - 2x~ll ~ 2 ~ +  Ilull = o ( 5 1 / p )  • 

By symmet ry ,  we also  h a v e  114 - 2 X l  II = 0 ( 6 * / %  a n d  thus II~ - 411 = o ( ( ~ I / p )  

as claimed.  II 



226 J. MATOUSEK Isr. J. Math. 

Rather  than dealing with the complete binary trees Bm in the proof of 

Theorem 1, it will be more convenient to lower-bound the distortion needed 

for embedding of trees Tk,h with a large k into X. We observe that  Tk,h can 

be embedded into the complete binary t r e e  B2h[log 2 k] with distortion at most 2. 

Indeed, if a vertex v of Tk,h has already been mapped to a vertex u at some level 

of B2h[log ~ k], then the k successors are mapped to k vertices above u at level 

+ 2 [log 2 k~ whose mutual  distances are all between [log 2 k~ and 2 [log 2 k~. 

For a rooted tree T, let S P ( T )  stand for the set of all unordered pairs {x, y} 

of vertices of T such that  x lies on the path from y to the root. We need the 

following simple Ramsey-type result. 

LEMMA 5: Let h and r be given natural numbers, and suppose that k >_ r (h+l)2 . 

Suppose that each of the pairs from SP(Tk,h) is colored by one of r colors. 

Then there exists a copy T'  of Bh in this Tk,h such that the color of any pair 

{x,y} e S P(T ' )  only depends on the levels of x and y. 

Proof: Label each leaf z of Tk,h by the (h+l)-element vector consisting of the 

colors of the pairs (x,  y} E SP(Tk,h) lying on the path  from z to the root (enu- 

merated in some order common for all leaves z). In this way, the leaves of Tk,h 

are colored by r '  < r (h+l)2 colors. We want to show the existence of a copy of 

Bh all of whose leaves have the same color. By induction on h, we prove the 

following statement:  I f  the leaves of Tk,h are colored by r' colors and k > r', then 

there exists a copy of Bh all of whose leaves have the same color. The h = 0 case 

is trivial. For h ~ 1, consider all the k subtrees isomorphic to Th-l,k attached 

to the root of Tk,h. In each of them, select a copy of Bh-1 with monochromatic 

leaves. Since k > r ' ,  two of these copies have the same color of leaves and by 

connecting them to the root we get the desired copy of Bh. | 

The next lemma says that  if a copy of the metric space Ph is embedded into 

any metric space with a constant-bounded distortion, and h is large enough, then 

some 3-term arithmetic progression is embedded with distortion close to 1. In 

order to get an asymptotically tight bound for the embedding of trees, we need 

a slightly complicated quantitative version. 

LEMMA 6 (Path embedding lemma): For any given constants a > 0 and 13 C 

(0, 1), a constant C = C(a ,  fl) exists with the following property: Whenever 

f is a non-contracting mapping of the metric space Ph into some metric space 

(X, p) and h > 2 cK~, where K = I]f[]Liv, then there exists a subspace Z = 

{x, x + d, x + 2d} C_ Ph such that if  we denote by fo the restriction of f on Z, 
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then fo is a (1 + c)-isomorphism with 

(Qualitatively: The more Z is expanded by f ,  the more precisely must f (Z)  be 
isomorphic to P2.) 

Proof: For d E {1, 2 , . . . ,  h}, define 

K(d) = max ~ p(f(x), f(y)) } t F-- I ; cPh, i x - y l = d  • 

I t  is easy to see tha t  K(d) > K(2d)  for all d. 

Next,  define a sequence of numbers  x0 > x0 > xi  > " -  by set t ing 

xo = K and x j+ i  = xj/(1 + fl/4x~). 

Let t be the first index with xt _< 1; a simple calculation shows tha t  t = O(K'~), 
and hence we may  assume 2 t _< h (by taking C large enough).  In the sequence 

K ( 2  °) > K ( 2  i) _> K ( 2  2) >_ .- .  > K(2 t ) ,  there exist two consecutive values, say 

K ( 2  i) and K(2 i+ i ) ,  lying in the same interval [xj+i,  xj) .  Hence 

K(2 ~) 
1 _< K(2~+~---- ~ <_ 1 + 7/, where ~ / -  4K(2i)  ~ 

We choose d = 2 i and fix points  x, x + 2d E Ph such tha t  K(2d)  is a t t a ined  for 

them,  i.e. p(f(x), f (x  + 2d)) = 2dK(2d). We have p(f(x), f (x  + cl)) <_ dK(d) <_ 
d(1 + r /)K(2d),  and analogously p(f(x + d), f (x  + 2d)) _< d(1 q- ~)K(2d) .  On the  

other  hand,  p(f(x), f ( x  + d)) > p(f(x), f (x  + 2d)) - p(f(x + d), f ( x  + 2d)) _> 

2dK(2d) - d(1 + ~)K(2d)  = d(1 - 77)K(2d). From this, the  condit ions of the  

L e m m a  are s t ra ightforward to check. | 

Proof of Theorem 1: The  plan of the proof  is quite simple. We consider a non- 

cont rac t ing  embedding  f :  Tk,n --+ X.  Using Lemmas  5 and 6 we show tha t  if 

[[filLip is small  then  there exists a 0-fork in Tk,n m a p p e d  to a 6-fork in X ,  and 

this contradic ts  L e m m a  4 since the tips of the fork are far apar t  in Tk,h. A more  

detai led proof  follows. 

Let  fl > 0 be a sufficiently small  constant  (depending on p and c), suppose t ha t  

m is large enough, and let k, h be  auxil iary pa ramete r s  (their dependence  on m 

will be  fixed later) .  Suppose tha t  f :  Tk,h ~ X is a non-contract ing m a p p i n g  

with  ][ f [] Lip = K = ci (log m)i/p; for cl small  enough, we derive a contradict ion.  
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Set r -= 2KP+1/t3, and suppose that  k > r ( h + l ) 2 .  Color the pairs in SP(Tk,h) 
according to the distort ion of their distance by f ;  namely, a pair {x ,y}  E 

SP(Tk,h) gets the color 

j C{0,1, . . . , r -  

where ~- denotes the metric in Tk,h. By Lemma 5, there exists a copy T '  of Bh 
in Tk,h such tha t  the color of pairs {x, y} E SP(T') only depends on the level of 

x and y. This means tha t  all paths from the root  to a leaf of T '  are embedded 

in the same way by f ,  up to a distort ion at most  1 + ~K -p. 
Let P be one such root-leaf path  in T '  (isometric to Ph). If we set h = 2 c~c,, 

where C = C(p, ~) is as in Lemma 6, we can select three vertices x0, xl ,  x2 of P 

at levels 6, f + d, f + 2d such tha t  f acts as a (1 + ~)-isomorphism on this triple, 

where 
5 = fl ( l ' f(xo) - f ( x l ) " )  -p 

If  we let x~ be a vertex of T '  at level e + 2d and at distance 2d from x2, we see 

tha t  the f - images  of x0, Xl, x2, and x~ form a 35-fork in X.  By Lemma 4, we get 

2d < I[f(x2) - f(x~)[I = Iff(x0) - f(xl)[lO(5 l/p) = O(fl 1/pd) 

where the constant  of proport ional i ty  in the last O(.) notat ion doesn ' t  depend 

on/3.  In this way, we get a contradict ion by choosing fl small enough. 

It  remains to check the choice of the parameters.  We have h < 2 cK' ,  and 

by sett ing cl in the expression K = Cl(logm) 1/p sufficiently small, we can 

guarantee  h < m 1/4 (say). Then  we have k = r (u+1)2 = K O((p+l)v/-'~) = 

exp (O( log logmv/ m ) ) ,  and so h l o g k  = O(m 3/4) < m. Therefore, by the ob- 

servation made  above Lemma 5, the tree Tk,h used in the above proof  can be 

2-embedded into Bm, and Theorem 1 is proved. II 

3. U p p e r  b o u n d  

Proof of Lemma 2: By induction on cdim(T).  Suppose tha t  cdim(T) -- k + 1; 

it suffices to  show the existence of two disjoint subtrees T '  and T"  of T with 

c d i m ( T ' ) , c d i m ( T " )  > k. For contradiction, suppose tha t  no such T' ,T"  exist. 

We define a pa th  P1 inductively, s tar t ing in the root. Let v be the last vertex 

of P1 selected so far, and let v l , . . .  ,vm be its sons in T (if v is a leaf then the 
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definition of P] is finished). Let Tj denote the subtree of T rooted at vj. If  each 

of the Tj's has caterpillar dimension at most  k - 1 we choose an arb i t rary  vj as 

the next  vertex of/)1.  If cdim(Tj) = k for some j (note tha t  such a j must  be 

unique) we let the next vertex of P1 be vj. This finishes the definition of P1- 

Each componen t  of T - E(P1) has caterpillar dimension at most  k - 1, and 

this contradicts  the assumpt ion cdim(T) -- k + 1. i 

EMBEDDING THE COMPLETE BINARY TREE. First we show how to embed the 

tree Bm into g2 with distort ion O ( ~ ) ;  this is very similar to Bourgain ' s  

embedding in [Bou86]. The  embedding of an arbi t rary  weighted tree into ~p is 

considerably more  complicated but  it is based on a similar approach.  

Let us identify the vertices of Bm with words of length at most  m over the 

a lphabet  {0, 1}. The  root  of B m is the empty  word A, and the sons of a vertex 

w are the vertices w0 and wl .  Now we can define an embedding f :  V(Bm)  --4 

glY(Bm)l-] where the coordinates in the range of f are indexed by the vertices 2 

of Bm distinct from the root, i.e. by nonempty  words. For a word w E V(Bm)  

on level a of B,~, tha t  is, of length a, we define 

f (w)u  = x / a -  b+ 1 

if u is a nonempty  initial segment of w of length b, and 

= 0 

otherwise. In particular,  we have f (A)u  = 0 for all u. For example, the indices of 

the coordinates  for embedding of B2 are 0, 1, 00, 01, 10, 11, and the embedding 

looks as follows: 

000000 

100000 010000 

V~01000 v~00100 0v/20010 0v/20001 

It is easy to see tha t  for bounding  the distort ion for such an embedding,  it suffices 

to consider the distances of vertices u, v with u lying on the pa th  from v to the 

root. Let  u, v be such vertices, and let u have level a and v level b in Bin, a < b. 

Then  we have 

b 

i = l  i = a + l  

= ( b - a )  2 + E ( b - i + l ) .  
, =1   =o÷1 
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The second sum in this expression is f~((b- a) 2) and hence [If- l[[Lip is upper- 

bounded by a constant. The first sum can be estimated by 

(b_a)2  1 < ( b - a ) 2  < ( b _ a ) 2 ( l n a + l )  
a + b + 2 - 2 i  - 

i=1 "= 

and so the distortion of f is bounded by O(lox/i-~). 

G E N E R A L  W E I G H T E D  TREES.  W e  need some preparatory lemmas. 

LEMMA 7: L e t  y > x > 0 and 0 < a < 1. T h e n  we have  

y ~ _  x~ < y-_~x  
- -  y l - a "  

Proof :  We have 

y ~ - x ~ = y ~ ( 1 - ( ~ )  ~ )  _ < Y ~ ( 1 - ~ ) -  y-Xyl_~. | 

LEMMA 8: L e t  x : ,  x2, . .  •, x k  be real pos i t i v e  numbers. T h e n  we have  

k 

E x i  < 1 +ln(Xl +x2 + ' "  + x k  + 1). 
i=1 x i  + x i+ l  + " " + x k  + l -- 

Proo£" Put si  = xz + x i+l  + " " + x k  + l .  Let 

{ 1 <xi I} 
- - _ - - < - :  , I j  = i C { 1 , 2 , . . . , k } :  j + l  si 3 

and let kj -- IIjl. Then the sum in the lemma is upper-bounded by the sum 

o~ k j  
(:) I + 5--~ 7 . 

j=l 

On the other hand, if i C Ij ,  we get 

si+~ _ si  l <_j, 

Xi Xi 

( - - ~ - )  > S i + l ( l +  1) Hence and so si  = 8i+1 q- x i  ~-- S i+ l  1 + s~+l - 

1 +  <_ 8 1 :  Xl  q- X2 + " " " q- Xk q -1 ,  

j = l  

and the lemma follows by taking logarithms on both sides of this last inequality 

and by using ln(1 + 1 / j )  <_ 1 / j  and (1). | 
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LEMMA 9: For arbitrary posi t ive  real numbers  x , y , z  and for any  ~ C (0,1), we 

have 

( x  + + z )  - > z .  

Proof: It suffices to consider the case z = 1. We have 

( x + l ) ~ = x a ( l + l ) ~ > x ~ ( l + ~ ) ,  

and so 

where t = y / x .  It is not difficult to check that for any a E (0, 1), the only zero 

of the derivative of the function f( t)  = a t  1-~ + (1 - a ) t  -~ is at t -- 1. From this 

we can verify that f ( t )  _> 1 for all t > 0. | 

Proo f  of Theorem 3: Let T be a tree metric space with metric p, and let us 

set m = cdim(T). We define a p a t h  p a r t i t i o n  of the tree T. If T is a single 

vertex then the path partition is empty, and otherwise the path partition of T 

consists of some paths P1, P2,--. ,  Pr as in the definition of cdim(T) plus the 

union of path partitions of the components of T - E(P1)  . . . . .  E(Pr) .  We say 

that the paths P1 , - - . ,  P~ have level 1 in such a path partition, and the paths of 

level k __ 2 are the paths of level k - 1 in the corresponding path partitions of the 

components of T -  E(P1)  . . . . .  E(P~).  Note that the paths in a path partition 

are edge-disjoint and together cover the edge set of T (see Fig. 1). 

level 1 

level 2 

............... level 3 

Figure 1. A schematic example of a path partition. 

In the sequel, we assume that some path partition H of T containing no path 

of level more than m is chosen once and for all. Let v be a vertex of the tree 

T, and consider the path from the root to v. The first segment of this path, of 

length dl, follows some path PI of level 1 in the part partition H, the second 

segment, of length d2, follows a path P2 of level 2, . . . ,  and the last (ath) segment 

of length d~ follows a path P~ of level a in II, a _< m. Let us call the sequence 



2 3 2  J .  M A T O U S E K  I s r .  J .  M a t h .  

(P1, P2 , . . . ,  Pa) the p a t h  sequence  of v and the sequence (dl, d2 , . . . ,  da) the 

p a t h  l e n g t h  s equence  of v. 

Let q denote the exponent dual to p, that is, the one with l i p  + 1/q = 1. Now 

we can define an embedding f :  V(T)  ~ gp. The relevant coordinates in ep will 

be indexed by the paths in II. For f (v ) ,  only the coordinates corresponding to 

the paths in the path sequence of v can be nonzero. If (dl, d2 , . . . ,  da) is the path 

length sequence of v, we define the numbers 

(2) s~(v) : d~ + ~ max(O,  d j - d _ ~ ) ,  
j = i + l  

i = 1, 2 , . . . ,  a. Now we let the coordinate indexed by Pi of the point f ( v )  be 

f ( V ) p i  ~ l / p  1/q  
= a i 8 i . 

It remains to estimate the distortion of f ,  which is not too difficult but a bit 

lengthy. 

Let x and y be two vertices of T and let (d l ,d2 , . . . , da)  and (e l ,e2 , . . . , eb)  
be their respective path length sequences. Let k be the index such that exactly 

tile first k terms of the path sequences of x and of y coincide, and suppose 

that the notation x, y is chosen in such a way that dk < ek (note that di = ei 

for i = 1 , 2 , . . . , k -  1). Let us put si = si(x), i = 1 , 2 , . . . , a  and ti = si(y), 

i = 1, 2 , . . . ,  b. Here is a schematic picture: 

e k  

dl -- "~ clk+l . . . . . .  
root d2 = e2 ~ x 

Finally let us write A = ek - dk, d = dk+l + dk+2 + -'- + da and e = ek+l + 

ek+2 + "" " + eb. Note that the distance of x and y in T equals e + d + A. 

We now write 

1If(x) - f(y)ll  = s + D + A + B ,  
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where 
k-1 k-1 

1 / p l / q  i ~  TM 8~/q _ t~/q p S = E  di ~i ^I/p*I/qIP - = 

i=1 i=1 

.1/p 1/q 1/p~l/ql  p 
D = a k s k - -  ek ~k I ' 

A = ~--~ " l / p l / q p a  s s i = ~ d i s P - l ,  and 
i = k + l  i = k + l  

b b 

B E 1/ml/q p = ~ "  v- t  = eit i . 
i = k + l  i = k + l  

We will est imate these terms one by one. First we show tha t  

d p 
- - < A < d  p 
4 p -  

(and, symmetrically,  it follows tha t  eP/4 p < B < eP). The upper  bound  is 

obtained easily from the inequality si _< d. As for the lower bound,  we first note 

tha t  (2) gives 

(3) si  
di 

> d i + ( d i + l + . . . + d ~ ) - - - >  
- -  2 - -  

d - dk+l - dk+2 . . . . .  di-1 > 
- 2 

di + di+l + . . .  + d~ 

Let us choose an index i _> k + 1 such that  dk+l + dk+2 + "'" + di >_ ½d and at 
1 the same t ime dk+l + dk+2 + " "  + di-1 < ~d. Then  we have 

i 
A>_ E d j (  d - d k + l - d k + 2 2  . . . . .  d J - l )  p-1 

j=k+l 

--> ( d k + l - t - ' " ~ - d i )  ( d - d k + l - d k + 2 2  . . . . .  d ~ - l )  p-1 

Next, we show tha t  IIf-lHLip is upper-bounded by a constant.  If  A < 2 ( d + e ) ,  

we have IIf(x) - f(Y)IIp >- (A + B) 1/p > (d + e) /4  = gt(d + e + A) = f~(p(x,y)). 
On the o ther  hand,  for A > 2(d + e), we have 

t k - - S k  > _ e k - d k - l d - e  I - -  
d + e  A A A 

>_A 
2 2 4 4" 
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Consequent ly ,  using L e m m a  9, we get  

>_ (dk + A)l/p(sk + ~A)  1/q - al/PYq~k ~k D1/p 

)> (dk_f_ ~A)l/P(sk-f- ~/~)l/q rll/Psl/q > I~A 
- - ~ k  k - 4  =Q(p(x,y)) .  

I t  r emains  to  b o u n d  IlfllLip and,  to this  end, we stil l  need to e s t ima te  the  t e rms  

D and  S from above. Here we can s implify the  s i tua t ion  a l i t t le  by assuming  

t h a t  x lies on the  pa th  from the  root  to y. Indeed,  if it  were not  the  case, let  

us consider  z, the  last  ver tex  common to the  pa ths  from the root  to the  vert ices 

x and  y. T h e n  p(x, y) = p(x, z) + p(z, y), and we can use the  uppe r  bounds  for 

Hf(x) - f(z)l[p and [[f(z) - f(Y)Hp to e s t ima te  [If(x) - f(y)l[p. The  considered 

s i tua t ion  can thus  be i l lus t ra ted  as follows: 

ek 
. . . . . . . . . . . . . . . . . . . . . . . .  i 

dl ~- e l  A i ek+l 
"- I I "- I I I eb . . . . . . . . . .  ~ y 

r o o t  d2 = e2 dk x 

For the  i t h  t e rm  of the  sum S, 1 ~ i < k, L e m m a  7 yields the  e s t ima te  

di t~ la 1 / q  p -- 8i[ p - ~' I <_ d i [ t i  t ,  

Since el  = d l ,  e2 = d 2 , . . . ,  ek-1 = dk-1,  from (2) we ob ta in  

(4) ti  - si -- E m a x  0, ej - ~mm - m a x  0, dk - ~mm " 
j=k 

L e t  u s  pu t  5 = ek + e k + l  T . - .  + eb, a n d  

I = {i e { 1 , 2 , . . . , k -  1} :  di/2m < 5}. 

If  i ¢ I ,  we get  dk - di /2m < 0 and ej - d j 2 m  < 0 for all j = k , k  + 1 , . . . , b ,  

and  from (4) we see tha t  s, - t ,  -- 0. For  i E I ,  we use the  e s t ima te  ti - s, < 

A + e k + l  + e k + 2  + ' " + e b  = p(x,y). At the  same t ime,  as in (3), we have 

t ,  ~ (e, + e,+l  + ' "  + eb) /2  = (e, + e,+l + ' "  + ek -1  + 5 ) /2 .  So  w e  g e t  ( r e c a l l  

t h a t  ei -- di for i < k) 

k--1 k - 1  
s = e, - <_ y: e, It,-t,s,l  

i = l  i = 1  

ei ~ ~ ei 

_< o(p(x, yF)" ~ e, + e,+~ + - -  + ek-~ + 5 - 7-- 5 + ~jc~  e," 
iCI "El 



Vol. 114, 1999 EMBEDDING TREES 235 

We apply Lemma 8, where the role of the xi 's  is played by the numbers ej/5 with 

j E I .  This yields the bound S = p(x, y)PO(logm). 
Let us finally consider the term D. In our situation, we have dk <_ ek, Sk = dk 

and tk = ek ÷ c~, where a _~ ek+l + ek+2 + - ' -  + eb ~_ p(x,y). We arrive at 

( D l /p--  dk--e~/P(ek+a)  1/q ---- - e k  l+~-~k 

~ ,d k - ek,-}-ek [(1-q---~k) i/q 1 

< A q - e k  1 + - - - 1  =A+r~=-O(p (x , y ) ) .  
ek 

Together with the previous estimates for B and S, this implies that  

llf(x) - f(Y)l[p ~- O(logl/Pm) "p(x,y) .  

Theorem 3 is proved. | 

4. Concluding remarks 

Our results determine tight worst-case asymptotic bounds for the distortion 

needed to embed an n-point tree metric space into gp. For the probably most 

significant case p = 2, there is also a polynomial-time algorithm that  finds an 

embedding into g2 with the smallest possible distortion for a given n-point metric 

space [LLR95] (I am aware of no result for the analogous question with p ~ 2). 

Much less is known if we restrict the dimension of the target space, that  is, if 

we ask for the minimum D = D(n, d) such that  all n-point tree metric spaces T 

can be D-embedded into gd (or into gd). This setting may be quite interesting for 

practical applications. For an arbitrary n-point metric space M, it was shown 

[Mat90] that  the required distortion for embedding into gd with d fixed, is at 

least ~(n 1/L(d+l)/2j ) and at most  O(n 2/d log 3/2 n) (with an improvement to O(n) 
for d -- 1, 2). There still remain significant gaps between the lower and upper 

bounds for odd dimensions d >_ 3. For instance, for d = 3, the lower bound is 

~ ( n  1/2) but the upper bound is only about n 2/3. 
For tree metric spaces, it seems that  only the  ~(n 1/d) lower bound is available, 

coming from an easy volume argument (consider embedding of the star with 

n - 1 leaves). It  seems plausible that  this bound could be close to the t ruth  for 

tree metric spaces. Also, it would be interesting to investigate the algorithmic 
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complexity of testing D-embeddabili ty into gd for tree metric spaces and/or  for 

arbi trary metric spaces. 

Note  added in proof'. Recently, results on embedding trees into g2 somewhat 

weaker that  those in the present paper have been obtained by Linial, Magen and 

Saks [Israel Journal of Mathematics 106 (1998), 339-348. Gupta  [Proceedings 

of the 31st Annual ACM Symposium on Theory of Comput.,  Atlanta, Georgia, 

1999] proved that  any n-point tree metric space can be embedded into the d- 

dimensional Euclidean space with distortion O(n l /d -1 ) .  
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